

Mark Scheme (Results)

January 2017

Pearson Edexcel International Advanced Subsidiary Level In Further Pure Mathematics F1 (WFM01) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2017
Publications Code WFM01_01_1701_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively.
 Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- o.e. or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to $x = ...$

$$(ax^2 + bx + c) = (mx + p)(nx + q)$$
, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = ...$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

January 2017 WFM01 Further Pure Mathematics F1 Mark Scheme

Question Number	Scheme		Notes	Marks
1.	$f(x) = 2^x 10\sin x 2, x \text{ measured in radians}$			
(a)	f(2) = 7.092974268 f(3) = 4.588799919		Attempts to find values for both $f(2)$ and $f(3)$	M1
	Sign change {negative, positive} {and $f(x)$ is continuous} therefore {a root} is between $x = 2$ and $x = 3$	f(3) = awrt	Both $f(2) = awrt 7$ and 5 or truncated 4 or truncated 4.5, sign change and conclusion.	A1 cso
				(2)
(b)	$\frac{2}{"7.092974268"} = \frac{3}{"4.588799919"}$ or $\frac{2}{3} = \frac{"7.092974268"}{"4.588799919"}$ or $\frac{2}{"7.092974268"} = \frac{3}{"4.588799919" + "7.092974268}$)2974268"	A correct linear interpolation method. Do not allow this mark if a total of one or three negative lengths are used or if either fraction is the wrong way up. This mark may be implied.	M1
	Either $ = \left(\frac{(3)("7.092974268") + (2)("4.5887999174268")}{"4.588799919" + "7.092974268"} \right) $ or $ = 2 + \left(\frac{"7.092974268"}{"4.588799919" + "7.092974268"} \right) $ or $ = 2 + \left(\frac{"7.092974268"}{"4.588799919" + "7.092974268"} \right) $	dependent on the previous M mark. Rearranges to make =	dM1	
	$\left\{ = 2.607182963 \right\} = 2.607 (3 dp)$		2.607	A1 cao
	2.007.1027.00		2.007	(3)
(b) Way 2	$\frac{x}{"7.092974268"} = \frac{1}{"4.588799919"} x = "$	7.092974268 11.68177419	·" = 0.6071829632	
	= 2 + 0.6071829632	I	Finds x using a correct method of iangles and applies "2 + their x "	M1 dM1
	$\left\{ = 2.607182963 \right\} = 2.607 (3 dp)$		2.607	A1 cao
(b) Way 3	$\frac{1}{\text{"7.092974268"}} = \frac{x}{\text{"4.588799919"}} \qquad x = \frac{x}{\text{"4.588799919"}}$	4.588799919 11.68177419	— = 0.3928170366	
	= 3 0.3928170366		Finds x using a correct method of iangles and applies "3 their x "	M1 dM1
	$\left\{ = 2.607182963 \right\} = 2.607 (3 dp)$		2.607	A1 cao
				5

	Question 1 Notes				
1. (a)	A1	correct solution only Candidate needs to state both $f(2) = awrt 7$ and $f(3) = awrt 5$ or truncated 4 or truncated 4.5 along with a reason and conclusion. Reference to change of sign or e.g. $f(2)$ $f(3) < 0$ or a diagram or < 0 and > 0 or one negative, one positive are sufficient reasons. There must be a (minimal, not incorrect) conclusion, e.g. root is between 2 and 3, hence root is in the interval, QED and a square are all acceptable. Ignore the presence or absence of any reference to			
		continuity. A minimal acceptable reason and conclusion is "change of sign, hence root".			
(a)	Note	In degrees, $f(2) = 1.651005033$, $f(3) = 5.476640438$			
	Note	Some candidates will write $f(2) = 4$, $f(3) = 0.4147$			

Question Number	Scheme	Notes	Marks			
2.	$2x^2$ $x+3=0$ has roots ,					
	Note: Parts (a) and	(b) can be marked together.				
(a)	$+ = \frac{1}{2}, = \frac{3}{2}$	Both + = $\frac{1}{2}$ and = $\frac{3}{2}$				
		Attempts to substitute at least one of	(1)			
(b)	$\frac{1}{-} + \frac{1}{-} = \frac{-}{-} = \frac{\frac{1}{2}}{\frac{3}{2}}$	their $(+)$ or their into $\frac{+}{-}$	M1			
	$=\frac{1}{3}$	$\frac{1}{3}$ from correct working	A1 cso			
			(2)			
(c)	$Sum = \left(2 \qquad \frac{1}{}\right) + \left(2 \qquad \frac{1}{}\right)$	Uses at least one of $2(\text{their}(+))$ or their				
	$=2(+)\left(\frac{1}{-}+\frac{1}{-}\right)$	$\frac{1}{2} + \frac{1}{2}$ in an attempt to find a numerical value	M1			
	$= 2\left(\frac{1}{2}\right) \left(\frac{1}{3}\right) = \frac{2}{3}$	for the sum of $\left(2 \frac{1}{-}\right)$ and $\left(2 \frac{1}{-}\right)$.				
	Product = $\left(2 \frac{1}{2}\right)\left(2 \frac{1}{2}\right)$	Expands $\left(2 \frac{1}{2}\right)\left(2 \frac{1}{2}\right)$ and uses their				
	$=4$ 2 2 + $\frac{1}{2}$	at least once in an attempt to find a				
	.(2) . 1	numerical value for the	M1			
	$=4\left(\frac{3}{2}\right) 4+\frac{1}{\left(\frac{3}{2}\right)}$	product of $\left(2 \frac{1}{-}\right)$ and $\left(2 \frac{1}{-}\right)$.				
	$= 6 4 + \frac{2}{3} = \frac{8}{3}$					
	$x^2 \frac{2}{3}x + \frac{8}{3} = 0$	Applies x^2 (their sum) x + their product (Can be implied) Note: (" = 0" not required for this mark.)	M1			
	$3x^2 2x + 8 = 0$	Any integer multiple of $3x^2$ $2x + 8 = 0$ including the "= 0"	A1			
			(4)			
			7			

		Question 2 Notes
2. (a)	Note	Finding $+ = \frac{1}{2}$, $= \frac{3}{2}$ by writing down $= \frac{1 + \sqrt{23}i}{4}$, $\frac{1 + \sqrt{23}i}{4}$ or by applying
		$+ = \left(\frac{1 + \sqrt{23}i}{4}\right) + \left(\frac{1 - \sqrt{23}i}{4}\right) = \frac{1}{2} \text{ and } = \left(\frac{1 + \sqrt{23}i}{4}\right) \left(\frac{1 - \sqrt{23}i}{4}\right) = \frac{3}{2}$
		scores B0 in part (a).
(b), (c)	Note	Those candidates who apply $+ = \frac{1}{2}$, $= \frac{3}{2}$ in part (b) and/or part (c) having
		written down/applied , $=\frac{1+\sqrt{23}i}{4}, \frac{1-\sqrt{23}i}{4}$ in part (a) will be
		penalised the final A mark in part (b) and penalised the final A mark in part (c).
(b)	Note	Applying , $=\frac{1+\sqrt{23}i}{4}$, $\frac{1-\sqrt{23}i}{4}$ explicitly in part (b) will score M0A0.
		E.g.: Give no credit for $\frac{1}{\underbrace{1+\sqrt{23}i}_{4}} + \frac{1}{\underbrace{1-\sqrt{23}i}_{4}} = \frac{1}{3}$
		,
		or for $\frac{1}{4} + \frac{1}{4} = \frac{1}{4} = \left(\left(\frac{1 + \sqrt{23}i}{4} \right) + \left(\frac{1 + \sqrt{23}i}{4} \right) \right) = \left(\left(\frac{1 + \sqrt{23}i}{4} \right) \left(\frac{1 + \sqrt{23}i}{4} \right) \right) = \frac{1}{3}$
(c)	Note	Candidates are not allowed to apply , $=\frac{1+\sqrt{23}i}{4}, \frac{1-\sqrt{23}i}{4}$ explicitly in part (c).
	Note	A correct method leading to a candidate stating $p = 3$, $q = 2$, $r = 8$ without writing a
		final answer of $3x^2$ $2x + 8 = 0$ is final A0

Question Number		Scheme		Notes	Marks		
3.	$f(x) = x^4$	$+2x^3+26x^2+32x+160$,	$x_{1} = 1$	1 + 3i is given.			
		$x_2 = 1 3i$	Note:	Writes down the root 1 3i 1 3i needs to be stated explicitly somewhere in the candidate's working for B1	B1		
	$x^2 + 2x + 10$			Attempt to expand $(x (1+3i))(x (1 3i))$ or $(x (1+3i))(x (their complex x_2))or any valid method to establish a quadratic factore.g. x = 1 \pm 3i x+1 = \pm 3i x^2 + 2x + 1 = 9or sum of roots 2, product of roots 10to give x^2 \pm (their sum)x + (their product)$	M1		
				$x^2 + 2x + 10$	A1		
	f(x) = (x)	$^2 + 2x + 10$)($x^2 + 16$)	$x^{2} + 2x + 10$ Attempts to find the other quadratic factor. e.g. using long division to get as far as $x^{2} +$ or e.g. $f(x) = (x^{2} + 2x + 10)(x^{2} +)$		M1		
				$x^2 + 16$	A1		
	${x^2 + 16} =$	$= 0$ $x = $ $ = \pm \sqrt{16} i; = \pm $	±4i	dependent on only the previous M mark Correct method of solving <i>their</i> 2^{nd} quadratic factor to give $x =$	dM1		
				4i and 4i	A1		
					7		
				Question 3 Notes	,		
3.	Note	$x_1 = 1 + 3i, x_2 = 1$	3i leadir	ng to $(x + 3i)(x + 3i)$ is $1^{st} M0 + 1^{st} A0$			
	Note	Give 3^{rd} M1 for $x^2 + k =$	=0, k>0	0 at least one of either $x = \sqrt{k}$ i or $x = \sqrt{k}$	i		
		Therefore $x^2 + 16 = 0$ le	eading to	a final answer of $x = \sqrt{16}i$ only is 3^{rd} M1.			
	Note	$x^2 + 16 = 0$ leading to x	$x = \pm \sqrt{1}$	6i) unless recovered is 3 rd M0 3 rd A0.			
	Note	Give 3^{rd} M0 for $x^2 + k =$	=0, k>0	$0 \qquad x = \pm ki$			
	Note			$0 x = \pm k or x = \pm \sqrt{k}$			
		Therefore $x^2 + 16 = 0$ le	eading to	$x = \pm 4 \text{ is } 3^{\text{rd}} \text{ M0}.$			
		Therefore $x^2 + 16 = 0$ le	eading to	$(x+4)(x-4) = 0$ $x = \pm 4$ is 3^{rd} M0.			
	Note		x = 1 3i, 4i, 4i is B1M0A0M0A0M0A0.				
	Note	Candidates can go from	$x^2 + 16 =$	= 0 to $x = \pm 4i$ for the final dM1A1 marks.			
	3 rd dM1	You can give this mark f which can be a 3TQ.	for a cor	rect method for solving <i>their</i> quadratic $x^2 + k$, k	>0		
	Note		$\sin x^2$ 16	$6 = 0$ leading to $(x+4)(x-4) = 0$ $x = \pm 4$ gets 3	rd M1.		

Question Number		Scheme		Not	es	Marks
4. (a)	$\left\{ \sum_{r=1}^{n} r(2r -$	$+1)(3r+1) = \begin{cases} $			$6r^3 + 5r^2 + r$	B1
		$(n+1)^2$ + 5 $\left(\frac{1}{6}n(n+1)(2n+1)\right)$ +			, , , , , ,	M1
			Correct expression (A1
	$=\frac{1}{6}n(n+$	-1)(9n(n+1) + 5(2n+1) + 3)	dependent on the previous M mark			
	$=\frac{1}{6}n(n+$	$-1)(9n^2 + 19n + 8)$	attempted to	Correct complete	fon with no errors. a = 9, b = 19, c = 8	A1 cso
			20			(5)
(b)	Let f(n)	$= \frac{1}{6}n(n+1)(9n^2+19n+8).$ S	So $r = 10$ $r = 10$	(3r+1) = f(20) $f(9)$		
	$= \left(\frac{1}{6}(20)\right)$	$9(20+1)(9(20)^2+19(20)+8)$	$ \frac{1}{6}(9)(9+1)(9(9)^2+19(9)+8) $ Attempts to find either $f(20) = f(20) = $			
	$= \left\{ = \left(\frac{1}{6} \right) (20) \right\}$	0)(21)(3988)	(3) = 279160	13620 } = 265540	265540	A1
						(2)
			Question	4 Notes		7
4. (a)	Note	Applying e.g. $n=1, n=2, n=1$ to give $a=9, b=19, c=8$ is	= 3 to the printe	ed equation without a	pplying the standar	d formulae
	Alt 1	Alt Method 1: Using $\frac{3}{2}n^4$			$(a)(n^3 + \frac{1}{6}(b+c)n^2 + $	1 -cn o.e.
	dM1	Equating coefficients and fin				
	A1 cso	Finds $a = 9, b = 19, c = 8$ and				
	Alt 2	Alt Method 2: $6\left(\frac{1}{4}n^2(n+1)\right)$	$)^2\bigg)+5\bigg(\frac{1}{6}n(n-1)\bigg)$	$+1)(2n+1)\bigg) + \bigg(\frac{1}{2}n(n+1)\bigg)$	$(n+1) = \frac{1}{6}n(n+1)(a$	$an^2 + bn + c$
	dM1 A1	Substitutes $n = 1, n = 2, n = 3$ Finds $a = 9, b = 19, c = 8$.	Substitutes $n=1$, $n=2$, $n=3$ into this identity o.e. and finds at least two of $a=9$, $b=19$, $c=8$ Finds $a=9$, $b=19$, $c=8$.			
	Note	Allow final dM1A1 for $\frac{3}{2}n^4 + \frac{14}{3}n^3 + \frac{9}{2}n^2 + \frac{4}{3}n$ or $\frac{1}{6}n(9n^3 + 28n^2 + 27n + 8)$				
		or $\frac{1}{6}(9n^4 + 28n^3 + 27n^2 + 8)$	$n) \rightarrow \frac{1}{6}n(n+1)$	$(9n^2 + 19n + 8)$, from	n no incorrect work	ting.
(b)	Note	Give M1A0 for applying f(2)	0) f(10). i.e.	. 279160 20130 {=	: 259030}	
	Note	Give M0A0 for applying 200	(41)(61) 9(19	(28) = 50020 4788	5 = 45232	
	Note	Give M0A0 for applying 200	, , , , ,			
	Note	Give M0A0 for listing indivi	dual terms. e.g	g. $6510 + 8602 + \dots$	+ 42978 + 50020 =	265540

Question Number	Scheme			Notes	Marks
5.	z =	$7 + 3i$; $\frac{2}{1 + 3}$	$\frac{x}{-i} + w = 3$	6i	
(a)	$\left\{ \left z \right = \sqrt{(7)^2 + (3)^2} \right\} = \sqrt{58} \text{ or } 7$	7.61577		$\sqrt{58}$ or awrt 7.62	B1
(b)	$\arg z = \arctan\left(\frac{3}{7}\right)$ $\operatorname{or} = \frac{1}{2} + \arctan\left(\frac{7}{3}\right)$ $\operatorname{or} = \arctan\left(\frac{3}{7}\right)$		2^{nd} q (1.3)	etry in order to find an angle in the quadrant. i.e. in the range of either 57, 3.14) or (3.14, 4.71) or (90°, 180°) or (180°, 270°). by itself is not sufficient for M1.	M1
	${= 0.40489} = 2.7367$ or ${= 0.40489} = 3.5464$ {Note: $\arg z = 156.8014$ ° or	4 {= 3.55	(2 dp)	either awrt 2.74 or awrt 3.55	A1 o.e.
(c) Way 1	$\frac{(7+3i)(1-i)}{(1+i)(1-i)} + w = 3 - 6i$		$\frac{i)}{i)} + w = 3$	6i or $\frac{z}{(1+i)} \frac{(1-i)}{(1-i)} + w = 3$ 6i e implied by $2 + 5i + w = 3$ 6i	M1
	2 + 5i + w = 3 6i w = 5 11i		dep	pendent on the previous M mark Rearranges to make $w =$ 5 11i	dM1 A1 (3)
(c) Way 2	z + w(1+i) = (3 - 6i)(1+i) w(1+i) = (9 - 3i) - (7 + 3i)	Fully corre	ect method o	f multiplying each term by $(1+i)$	M1
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	$w = \frac{(16 - 6i)}{(1 + i)} \frac{(1 - i)}{(1 - i)}$ $w = 5 - 11i$	Rearra	_	pendent on the previous M mark $w =$ and multiplies by $\frac{(1 - i)}{(1 - i)}$ $\frac{(1 - i)}{(1 - i)}$	dM1
	W 3 111			<i>J</i> 111	(3)
(d)	(-7,3) Im ♠			Plotting 7 + 3i correctly. It be indicated by a scale (could be axes) or labelled with coordinates or a complex number z.	B1
	0			Plotting their w correctly. It be indicated by a scale (could be axes) or labelled with coordinates or a complex number w.	B1ft
	(5, -11)		ward SC B11 ed correctly	Special Case B0 if both $7 + 3i$ and their w are relative to each other without any scale or labelled coordinates.	0
					8

Question Number		Scheme			Notes	Marks
6.	f	$(x) = x^3 \frac{1}{2x} + x^{\frac{3}{2}}, x > 0$				
(a)		$f(x) = 3x^{2} + \frac{1}{2}x^{2} + \frac{3}{2}x^{\frac{1}{2}}$ $f(x) = 3x^{2} + (2x)^{2}(2) + \frac{3}{2}x^{\frac{1}{2}}$	x^3 –	where A , B	At least one of either $\frac{1}{2x} \rightarrow \pm Bx^2$ or $x^{\frac{3}{2}} \rightarrow \pm Cx^{\frac{1}{2}}$ and C are non-zero constants. differentiated terms are correct	M1
		2		At least 2	Correct differentiation.	A1
	$\alpha \approx 0.6$	$-\frac{f(0.6)}{f'(0.6)} \} \Rightarrow \alpha \approx 0.6 - \frac{-0.152575}{3.630783}$	53318 893	Valid atte	dent on the previous M mark empt at Newton-Raphson using r values of $f(0.6)$ and $f(0.6)$	dM1
	${ = 0.64 }$	= 0.642 (3 dp)			0.642 on their first iteration nore any subsequent iterations)	A1 cso cao
	<u> </u>	Correct differentiation followed by				
		Correct answer with <u>no</u> v	working 	scores no m	narks in (a)	(5)
(b)	6(0,6415)	0.001620640		Chooses a	suitable interval for x , which is	(5)
Way 1	T(0.0415) = 0.001030049		05 of their answer to (a) and at	M1		
	_	ge {negative, positive} {and $f(x)$ is therefore {a root} = 0.642 (3 d			lues correct awrt (or truncated) sf, sign change and conclusion.	A1 cso
						(2)
(b)		Newton-Raphson again Using		or better e.	g. =0.64200226971	
Way 2	• α	$\alpha \simeq 0.642 - \frac{0.0001949626}{3.651474882} \left\{ = 0.64 \right.$ $\alpha \simeq 0.642022697 - \frac{0.0002778408}{3.651497787} \left\{ = 0.64 \right.$			Evidence of applying Newton-Raphson for a second time on their answer to part (a)	M1
	= 0.64	42 (3 dp)			= 0.642 (3 dp)	A1 cso
		Note: You can recove	r work f	for Way 2 in	part (a)	(2)
			Onestic	n 6 Notes		7
6. (a)	Note	Incorrect differentiation followed			with no evidence of applying	the
0. (a)	11016	NR formula is final dM0A0.	by then	commate of	with no evidence of applying	
	Final	This mark can be implied by apply	ing at le	east one corre	ect value of either $f(0.6)$ or $f(0.6)$	0.6)
	in 0.6 $\frac{f(0.6)}{f(0.6)}$. So just 0.6 $\frac{f(0.6)}{f(0.6)}$ with an incorrect answer and no other evidence				ce	
		scores final dM0A0.				
	Note	If a candidate writes 0.6 $\frac{f(0.6)}{f(0.6)}$	= 0.642	with no diff	ferentiation, send the response to	review.

	Question 6 Notes							
6. (b)	A1	Way 1: correct solution only Candidate needs to state both of their values for $f(x)$ to awrt (or truncated) 1 sf along with a reason and conclusion. Reference to change of sign or e.g. $f(0.6415)$ $f(0.6425) < 0$ or a diagram or < 0 and > 0 or one negative, one positive are sufficient reasons. There must be a correct conclusion, e.g. $= 0.642$ (3 dp). Ignore the presence or absence of any reference to continuity. A minimal acceptable reason and conclusion is "change of sign, so $= 0.642$ (3 dp)."						
	Note	Stating "root is in between 0.6415 and 0.6425 " without some reference to $= 0.642$ (3 dp) is not sufficient for A1.						
	Note	The root of $f(x) = 0$ is 0.6419466, so candidates can also choose x_1 which is less than 0.6419466 and choose x_2 which is greater than 0.6419466 with both x_1 and x_2 lying in the interval $\begin{bmatrix} 0.6415, 0.6425 \end{bmatrix}$ and evaluate $f(x_1)$ and $f(x_2)$.						
	Note	Conclusions to part (b) Their conclusion needs to convey that they understand that = 0.642 to 3 decimal places. Therefore acceptable conclusions are: e.g. 1: = 0.642 (3 dp) e.g. 2: (a) is correct to 3 dp {Note: their answer to part (a) must be 0.642} e.g. 3: my answer to part (a) is correct to 3 dp {Note: their answer to part (a) must be 0.642} e.g. 4: the answer is correct to 3 d.p. {Note: their answer to part (a) must be 0.642} Note that saying " is correct to 3 dp" or "0.642 is correct" or " = 0.642" are not acceptable conclusions.						
6. (b)	Note	$0.642 \frac{f(0.642)}{f(0.642)} = 0.642(3 \text{ dp}) \text{ is sufficient for M1A1 in part (b).}$						
0. (0)	Title	x $f(x)$ 0.6415 -0.001630649 0.6416 -0.001265547 0.6417 -0.000900435 0.6418 -0.000535312 0.6419 -0.000170180 0.6420 0.000194963 0.6421 0.000560115 0.6422 0.000925278 0.6423 0.001290451 0.6424 0.001655634 0.6425 0.002020827						

Question Number		Scheme		Notes	Marks
7. (i)(a)	Reflection	1		Reflection	B1
	in the y-ax	xis.		dependent on the previous B mark Allow y-axis or $x = 0$	dB1
					(2)
(i)(a)	Stretch sc	ale factor 1		Stretch scale factor 1	B1
Way 2	parallel to	the x-axis		dependent on the previous B mark parallel to the <i>x</i> -axis	dB1
					(2)
(b)	$\left\{ \mathbf{B} = \right\} \begin{pmatrix} 3 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$		$\begin{pmatrix} 3 & \dots \\ \dots & 1 \end{pmatrix} \text{ or } \begin{pmatrix} 1 & \dots \\ \dots & 3 \end{pmatrix}$	M1
		-)		Correct matrix	A1
					(2)
		Note: Parts (ii)(a) and (ii	i)(b) car	be marked together.	
	$\{k=\}\sqrt{(}$	(3)(3);=5	Att	tempts $\sqrt{\pm 16 \pm 9}$ or uses full method of	M1;
(ii)(a)	or	4 bain 2		trigonometry to find $k =$	
		$k\cos = 4$, $k\sin = 3$ to give $=$ and then $k =$		5 only	
					(2)
	5cos =	4, $5\sin = 3$, $\tan = \frac{3}{4}$		Uses trigonometry to	
(b)		1		find an expression in the range	M1
,	or $\tan^{-1}\left(\frac{3}{4}\right)$ and e.g. $= + \tan^{-1}\left(\frac{3}{4}\right)$			(3.14, 4.71) or (3.14, 1.57) or (180°, 270°) or (180°, 90°)	
	{ = +	0.64350 = 3.78509 {= 3.79 (2	(dp)	awrt 3.79 or awrt 2.50	A1
			1		(2)
(a)	 ∫ _M ¹ _}	$1 \begin{pmatrix} 4 & 3 \end{pmatrix}$		$\frac{1}{25}$ or $\begin{pmatrix} 4 & 3 \\ 3 & 4 \end{pmatrix}$	M1
(c)	\ \[\lambda \text{IVI} \ - \rangle \]	$= \frac{1}{25} \begin{pmatrix} 4 & 3 \\ 3 & 4 \end{pmatrix}$		$\frac{1}{25} \begin{pmatrix} 4 & 3 \\ 3 & 4 \end{pmatrix}$ or $\begin{pmatrix} 0.16 & 0.12 \\ 0.12 & 0.16 \end{pmatrix}$ o.e.	A1 o.e.
					(2)
)	n 7 Notos	10
7. (i)	Note	Give B1B0 for "Reflection in the		n 7 Notes	
(i)	Note	•	,	g. "enlargement parallel to the <i>x</i> -axis"	
(ii)(b)	Note	Allow M1 (implied) for awrt 217			
(ii)(b)	Note	$ \begin{pmatrix} k\cos & k\sin \\ k\sin & k\cos \end{pmatrix} = \begin{pmatrix} 4 & 3 \\ 3 & 4 \end{pmatrix} $			
(ii) (c)	Note	Allow M1 for $ \begin{pmatrix} 0.8 & 0.6 \\ 0.6 & 0.8 \end{pmatrix}$			

Question Number	Scheme		Notes	Marks	3
8.	$C: y^2 = 4ax$, a is a positive constant.	$P(at^2, 2$	at) lies on C ; k , p , q are constants.		
(a)	$y = 2a^{\frac{1}{2}}x^{\frac{1}{2}} \qquad \frac{dy}{dx} = \frac{1}{2}(2)a^{\frac{1}{2}}x^{-\frac{1}{2}} = \frac{\sqrt{a}}{\sqrt{x}} \qquad \frac{dy}{dx} = \pm k x^{-\frac{1}{2}}$			-	
	$y^2 = 4ax \qquad 2y\frac{\mathrm{d}y}{\mathrm{d}x} = 4a$		$py\frac{\mathrm{d}y}{\mathrm{d}x} = q$	M1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} = 2a \left(\frac{1}{2at}\right)$		$\frac{dx}{dx} = \frac{dy}{dx} = q$ their $\frac{dy}{dt} = \frac{1}{\text{their } \frac{dx}{dt}}$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = a^{\frac{1}{2}}x^{\frac{1}{2}} \text{ or } 2y\frac{\mathrm{d}y}{\mathrm{d}x} = 4a \text{ or } \frac{\mathrm{d}y}{\mathrm{d}x} = 2a$	$a\left(\frac{1}{2at}\right)$	Correct differentiation	A1	
	So, $m_N = t$ Applies m	$n_N = \frac{1}{m_T},$	where m_T is found from using calculus.	M1	
	2		Can be implied by later working		
	$y 2at = t(x at^2)$ or $y = tx + 2at + at^3$	_	line method for an equation of a normal $m_N(m_T)$ is found from using calculus.	M1	
	leading to $y + tx = at^3 + 2at$ (*)		Correct solution only	A1	
	Note: m_N must be a function of	f t for the	2 nd M1 and the 3 rd M1 mark.		(5)
(b)			lone $x = 5a$ if coordinates are not stated.	B1	
					(1)
(c)	$ \begin{cases} \text{their } (5a, 0) \text{ into } y + tx \end{cases} $,	-	
		$\frac{2at}{at^2} \frac{0}{5a}$		-	
	$PB^2 = (at^2 5a)^2 + (2at)^2 \frac{d}{dt}$			M1	
	$PB^2 = a^2t^4 10a^2t^2 + 25a^2 + 4a^2t^2 = a^2$		d <i>t</i>	_	
	Substitutes their coordinates of <i>B</i> into the n		<i>D1</i>		
	their m_N or minimises PB or PB^2 to obtain	n an equa	ation in a and t only. Note: $t q$ or p .		
	t^3 $3t = 0$ or t^2 $3 = 0$ $t =$		dependent on the previous M mark Solves to find $t =$	dM1	
	$\{Q, R \text{ are}\}\ (3a, 2\sqrt{3}a) \text{ and } (3a, 2\sqrt{3}a)$		At least one set of coordinates is correct.	A1	
			Both sets of coordinates are correct.	A1	(4)
(d)	Area $BQR = \frac{1}{2}(2(2a\sqrt{3}))(5a \ 3a)$	Poir	its are in the form $B(ka, 0)$, $Q(\ ,\)$		(•)
	<u> </u>		and $R(\ ,\),k$ 0 and		
	or $=\frac{1}{2}$ $\begin{vmatrix} 5a & 3a & 3a & 5a \\ 0 & 2\sqrt{3}a & 2\sqrt{3}a & 0 \end{vmatrix}$	apı	plies either $\frac{1}{2}((ka))(2)$ or writes	M1	
	·		down a correct ft determinant statement.		
	$=4a^2\sqrt{3}$		$4a^2\sqrt{3}$	A1	
			-		(2)
					12

Question Number	Scheme	Notes	Marks		
8. (c) Way 2	$y^{2} = 4ax \text{ into } (x + 5a)^{2} + y^{2} = r^{2}$ $(x + 5a)^{2} + 4ax = r^{2}$ $x^{2} + 10ax + 25a^{2} + 4ax = r^{2}$ $x^{2} + 6ax + 25a^{2} + r^{2} = 0$ $\{"b^{2} + 4ac = 0" \} 36a^{2} + 4(1)(25a^{2} + r^{2}) = 0$	Substitutes $y^2 = 4ax$ into $(x \text{ their } x_A)^2 + y^2 = r^2$ and applies " $b^2 + 4ac = 0$ " to the resulting quadratic equation.	M1		
	$36a^{2} 100a^{2} + 4r^{2} = 0$ $4r^{2} = 64a^{2} r^{2} = 16a^{2} r = 4a$ So $r = 4a$ gives $x^{2} 6ax + 25a^{2} 16a^{2} = 0$ $x^{2} 6ax + 9a^{2} = 0 (x 3a)(x 3a) = 0$ $x = 3a$	dependent on the previous M mark Obtains $r = ka$, $k > 0$, where k is a constant and uses this result to form and solve a quadratic to find x which is in terms of a .	dM1		
	$\begin{cases} y^2 = 4ax & y^2 = 4a(3a) = 12a^2 & y = \pm 2\sqrt{3}a \\ Q, R \text{ are} \end{cases} (3a, 2\sqrt{3}a) \text{ and } (3a, 2\sqrt{3}a)$	_ At least one set of	A1 A1 (4)		
	Question 8 Notes				
8. (c)	A marks Allow $(3a, \sqrt{12} a)$ and $(3a, \sqrt{12} a)$ as erespectively.	exact alternatives to $(3a, 2\sqrt{3}a)$ and $(3a, 2\sqrt{3}a)$	$a, 2\sqrt{3}a$		

(Assurant (Assu	:LHS = 4 3+1 = 2 , RHS = $1^3(1+1) = 2$ In the result is true for $n = k$) $4r^3 3r^2 + r = k^3(k+1) + 4(k+1)^3 3(k+1)^2 + 6k$ $+1)\left[k^3 + 4(k+1)^2 3(k+1) + 1\right]$ $+1)\left[k^3 + 4k^2 + 5k + 2\right] $	S RE (k+1) $2^2 + 3k + 1$ on both the pains either (k+1) $n = k + 1$. As alt is true for a sign of $k + 1$ is $k + 1$.	Shows or states both LHS = 2 and HS = 2 or states LHS = RHS = 2 Adds the $(k+1)^{th}$ term to the sum of k terms dependent on the previous M mark. Takes out a factor of either $(k+1)$ or $(k+2)$ previous M marks. Factorises out $k+1$ ($k+1$)() or $(k+1)(k+2)$ () Achieves this result with no errors. In the result has been shown to be all n	B1 M1 dM1 ddM1 A1 A1 cso 6 B1 M1	
(Assurant (Assu	time the result is true for $n = k$) $ Ar^3 - 3r^2 + r = k^3(k+1) + 4(k+1)^3 - 3(k+1)^2 + 6k^3 + 4(k+1)^2 - 3(k+1) + 1$ $ Ar^3 - 3r^2 + r = k^3(k+1) + 4(k+1)^3 - 3(k+1) + 1$ $ Ar^3 - 3r^2 + r = k^3(k+1) + 4(k+1)^3 - 3(k+1) + 1$ $ Ar^3 - 3r^2 + r = k^3(k+1) + 1$ $ Ar^3 - 3r^3 + r = k^3(k+1) + 1$ $ Ar^3 - 3r^3 + r = k^3(k+1) + 1$ $ Ar^3 - 3r^3 + r = k^3(k+1) + 1$ $ Ar^3 - 3r^3 + r = k^3(k+1$	REPUTE SET OF S	Adds the $(k+1)^{th}$ term to the sum of k terms dependent on the previous M mark. Takes out a factor of either $(k+1)$ or $(k+2)$ previous M marks. Factorises out $(k+1)(k+1)()$ Achieves this result with no errors. In the result has been shown to be all n (1) $(k+2)(k+2)(k+3)(k+4)(k+2)(k+4)(k+4)(k+4)(k+4)(k+4)(k+4)(k+4)(k+4$	M1 dM1 ddM1 A1 A1 cso 6 B1	
$k+1 \qquad (4)$ $r=1 \qquad = (k)$ $or (k)$ $= (k)$ $= (k)$ If the second	$4r^{3} 3r^{2} + r) = k^{3}(k+1) + 4(k+1)^{3} 3(k+1)^{2} + 6k^{2} + 1)\left[k^{3} + 4(k+1)^{2} 3(k+1) + 1\right]$ $(k+1)\left[k^{3} + 4k^{2} + 5k + 2\right] \text{ or } (k+2)\left[k^{3} + 3k^{2} + 1\right]$ $(k+1)(k+1)(k+1)(k+2)$ $(k+1)^{3}(k+1+1) \text{ or } = (k+1)^{3}(k+2)$ $(k+2)\left[k^{3} + 3k^{2} + 3k^$	on both the pains either $(k+1)$ $n = k+1.$ As the istructor is $k^4 + 5k^3 + 9$	dependent on the previous M mark. Takes out a factor of either $(k+1)$ or $(k+2)$ previous M marks. Factorises out $(k+1)(k+1)()$ or $(k+1)(k+2)()$ Achieves this result with no errors. In the result has been shown to be all n (n) n	dM1 ddM1 A1 A1 cso 6 B1	
or (k) $= (k)$ $= (k)$ If t Way 1 $f(k+)$ $f(k+)$ or $f(k+)$ or $f(k+)$ or $f(k+)$ or $f(k+)$	$(k+1)[k^3+4k^2+5k+2]$ or $(k+2)[k^3+3k^2+1)(k+1)(k+1)(k+2)$ dependent and obtain the result is true for $n=k$, then it is true for true for $n=1$, then the result is $n=1$, then the result is $n=1$, then the result is $n=1$, then n	on both the pains either $(k+1)$ $n=k+1$. As all is true for a $k=1$ k	mark. Takes out a factor of either $(k+1)$ or $(k+2)$ previous M marks. Factorises out $(k+1)(k+1)()$ or $(k+1)(k+2)()$ Achieves this result with no errors. In the result has been shown to be all n ($(k+2)(k+2)()$) $(k+1)(k+2)()$ $(k+1)(k+2)()$ Achieves this result with no errors. In the result has been shown to be all n ($(k+2)(k+2)()$) $(k+2)(k+2)(k+2)()$ $(k+2)(k+2)()$ $(k+3)(k+2)()$ $(k+2)(k+2)()$ $(k+3)(k+2)()$ $(k+3)(k+2)()$ $(k+3)(k+2)()$ $(k+3)(k+2)()$ $(k+3)(k+2)()$	ddM1 A1 A1 cso 6 B1	
$= (k \cdot \frac{1}{2})^{2}$		on both the pains either $(k+1)$ $n=k+1$. As all is true for a $k=1$ k	previous M marks. Factorises out +1)(k+1)() or $(k+1)(k+2)$ () Achieves this result with no errors. In the result has been shown to be all n (\uparrow) $0k^2+7k+2$ f(1) = 27 is the minimum	A1 A1 cso 6	
(ii) Way 1 $f(k+1) = f(k+1)$ or $f(k+1) = f(k+1)$	the result is true for $n = k$, then it is true for true for $n = 1$, then the result is full for $n = 1$, then the result is full form $n = 1$, then the result is full form $n = 1$, then the result form $n = 1$, th	n = k + 1. As alt is true for a s $k^4 + 5k^3 + 9$	s the result has been shown to be $\frac{\text{all } n}{0k^2 + 7k + 2}$ $f(1) = 27 \text{ is the minimum}$	A1 cso 6 B1	
(ii) Way 1	Note: Expanded quartic is $f(1) = 5^{2} + 3 1 = 27$ $f(k) = (5^{2(k+1)} + 3(k+1) 1) (5^{2k} + 3k)$	alt is true for a $k^4 + 5k^3 + 9$	$\frac{\text{all } n}{0k^2 + 7k + 2}$ $f(1) = 27 \text{ is the minimum}$	6 B1	
Way 1 $f(k+1) = f(k+1)$ or $f(k+1) = f(k+1)$	Note: Expanded quartic is $f(1) = 5^{2} + 3 1 = 27$ $f(k) = (5^{2(k+1)} + 3(k+1) 1) (5^{2k} + 3k)$	$s k^4 + 5k^3 + 9$	$0k^2 + 7k + 2$ $f(1) = 27 \text{ is the minimum}$	B1	
Way 1 $f(k+1) = f(k+1)$ or $f(k+1) = f(k+1)$	$f(1) = 5^{2} + 3 1 = 27$ $-1) f(k) = (5^{2(k+1)} + 3(k+1) 1) (5^{2k} + 3k)$		f(1) = 27 is the minimum	B1	
Way 1 $f(k+1) = f(k+1)$ or $f(k+1) = f(k+1)$	$f(k) = (5^{2(k+1)} + 3(k+1) 1) (5^{2k} + 3k)$	1)			
$f(k + \frac{1}{2})$ or $f(k + \frac{1}{2})$		1)	Attempts $f(k+1) - f(k)$	I M1	
or f(<i>i</i> or f(<i>i</i>	$f(k) = 24(5^{2k}) + 3$				
f(or f() or f()			21.		
f(or f() or f()	$= 24(5^{2k} + 3k 1) 9(8k 3)$		$24(5^{2k} + 3k 1) \text{ or } 24f(k)$	A1	
or f()	or = $24(5^{2k} + 3k + 1) + 72k + 27$ 9(8k 3) or $72k + 27$ f(k+1) = $24f(k) + 9(8k + 3) + f(k)$ dependent on at least one of the previous accuracy			A1	
	(k+1) = 24f(k) $72k+27+f(k)$ man	ks being awa	east one of the previous accuracy arded. Makes $f(k+1)$ the subject	dM1	
	or $f(k+1) = 25(5^{2k} + 3k + 1)$ $72k + 27$ and expresses it in terms of $f(k)$ or $(5^{2k} + 3k + 1)$				
	If the result is <u>true for $n = k$</u> , then it is <u>true for $n = k + 1$</u> , As the result has been shown to be <u>true for $n = 1$</u> , then the result <u>is true for all n</u> (\frown)				
(ii)	$f(1) = 5^2 + 3 1 = 27$		f(1) = 27 is the minimum		
Way 2 $f(k+$	$f(k+1) = 5^{2(k+1)} + 3(k+1)$ 1 Attempts $f(k+1)$		Attempts $f(k+1)$	M1	
f(k+	$f(k+1) = 25(5^{2k}) + 3k + 2$				
	$= 25(5^{2k} + 3k 1) 9(8k 3)$	$25(5^{2k} + 3k 1) \text{ or } 25f(k)$		A1	
or	$= 25(5^{2k} + 3k 1) 72k + 27$		$9(8k \ 3) \text{ or } 72k+27$	A1	
or f(f(k+1) = 25f(k) 9(8k 3) dependent on at least one of the previous accuracy marks being awarded. Makes $f(k+1)$ the subject			dM1	
	or $f(k+1) = 25(5^{2k} + 3k - 1) - 72k + 27$ and expresses it in terms of $f(k)$ or $(5^{2k} + 3k - 1)$				
If '	If the result is <u>true for $n = k$</u> , then it is <u>true for $n = k + 1$</u> , As the result has been shown to be true for $n = 1$, then the result is true for all n (\frown)				
		III IS THIR TOT 9	all n (

Question Number		Scheme			Notes	Marks
		(ii) $f(n) = 5^{2n} + 3n$ 1 is divisible by 9				
(ii)	General Method: Using $f(k+1)$ $mf(k)$; where m is an integer					
Way 3	$f(1) = 5^2 + 3$ $1 = 27$ $f(1) = 27$ is the minimum			f(1) = 27 is the minimum	B1	
	f(k+1)	$mf(k) = (5^{2(k+1)} + 3(k+1) 1)$	$m(5^{2k} +$	+3k 1)	Attempts $f(k+1)$ $mf(k)$	M1
	f(k+1)	$mf(k) = (25 m)(5^{2k}) + 3k(1$	m) + (2	(+m)		
	= (2	$5 m)(5^{2k} + 3k 1) 9(8k 3)$		(25	$(5 m)(5^{2k} + 3k \ 1) \text{ or } (25 \ m)f(k)$	A1
	or = (23)	$5 m)(5^{2k} + 3k 1) \qquad 72k + 27$			$9(8k \ 3) \text{ or } 72k + 27$	A1
		$\begin{aligned} \mathbf{f}(k) &= (25 m)\mathbf{f}(k) & 9(8k 3) + k \\ \mathbf{f}(k) &= (25 m)\mathbf{f}(k) & 72k + 27 + k \end{aligned}$		-	nt on at least one of the previous accuracy marks being awarded. +1) the subject and expresses it in terms of $f(k)$ or $(5^{2k} + 3k - 1)$	dM1
	If the result is true for $n = k$, then it is true for $n = k + 1$, As the result has been shown to be				A1 cso	
	true for $n = 1$, then the result is is true for all n (\uparrow)					
(ii)		General Method: Using $f(k+1)$ $mf(k)$				
Way 4		$f(1) = 5^2 + 3 1 = 27$			f(1) = 27 is the minimum	B1
	f(k+1)	$mf(k) = (5^{2(k+1)} + 3(k+1) 1)$	$m(5^{2k} +$	+3k 1)	Attempts $f(k+1)$ $mf(k)$	M1
	$f(k+1)$ $mf(k) = (25 m)(5^{2k}) + 3k(1 m) + (2+m)$					
	e a m =	$m = 2$ $f(k+1) + 2f(k) = 27(5^{2k}) + 9k$ $m = 2$ and $27(5^{2k})$ $m = 2$ and $9k$			A1	
	c.g. m =					A1
	f(k+1) =	$= 27(5^{2k}) + 9k 2f(k)$	_		east one of the previous accuracy arded. Makes $f(k+1)$ the subject	dM1
		and expresses it in terms of $f(k)$ or $(5^{2k} + 3k - 1)$				
	If the result is <u>true for $n = k$</u> , then it is <u>true for $n = k + 1$</u> , As the result has been shown to				the result has been shown to be	A1 cso
	true for $n = 1$, then the result is true for all n (\frown)					711 CSO
	Note Some candidates may set $f(k) = 9M$ and so may prove the following general result					
	• $\{f(k+1) = 25f(k) 9(8k-3)\}$ $f(k+1) = 225M 9(8k-3)$					
		$\bullet \left\{ \mathbf{f}(k+1) = 25\mathbf{f}(k) \right\}$	72k + 27	f(k+1) = f(k+1)	= 225M 72k + 27	
		T		estion 9 Notes		
(i)	Note	LHS = RHS by itself is not sufficient for the 1^{st} B1 mark in part (i).				
(i) & (ii)	Note	Final A1 for parts (i) and (ii) is dependent on all previous marks being scored in that p			part.	
	It is gained by candidates conveying the ideas of all four underlined points either at the end of their solution or as a narrative in their solution.					
(ii)	Note	In part (ii), Way 4 there are m	nany alte	rnatives where	e candidates focus on isolating (5	(2k),
	where is a multiple of 9. Listed below are some alternative results: $f(k+1) = 36(5^{2k}) 11f(k) + 36k 9 \qquad f(k+1) = 18(5^{2k}) + 7f(k) 18k + 9$ $f(k+1) = 27(5^{2k}) 2f(k) + 9k \qquad f(k+1) = 9(5^{2k}) + 16f(k) 45k + 18$					
					$1) = 9(5^{2k}) + 16f(k) 45k + 18$	
		See the next page for how the	se are de	erived.		

	Question 9 Notes Continued							
	(ii) $f(n) = 5^{2n} + 3n$ 1 is divisible by 9 i) The A1A1dM1 marks for Alternatives using $f(k+1)$ $mf(k)$							
9. (ii)								
	Way 4.1	$f(k+1) = 25(5^{2k}) + 3k + 2$						
		$= 36(5^{2k}) 11(5^{2k}) + 3k + 2$						
		$= 36(5^{2k}) 11[(5^{2k}) + 3k 1] + 36k 9$	$m = 11 \text{ and } 36(5^{2k})$ m = 11 and 36k 9	A1 A1				
		$f(k+1) = 36(5^{2k}) 11f(k) + 36k 9$ or $f(k+1) = 36(5^{2k}) 11[(5^{2k}) + 3k 1] + 36k 9$	as before	dM1				
	Way 4.2	$f(k+1) = 25(5^{2k}) + 3k + 2$						
		$= 27(5^{2k}) 2(5^{2k}) + 3k + 2$						
		$= 27(5^{2k}) 2[(5^{2k}) + 3k 1] + 9k$	$m = 2 \text{ and } 27(5^{2k})$	A1				
		= 27(3) + 3k + 1 + 9k	m = 2 and $9k$	A1				
		$f(k+1) = 27(5^{2k}) 2f(k) + 9k$ or $f(k+1) = 27(5^{2k}) 2[(5^{2k}) + 3k 1] + 9k$	as before	dM1				
	Way 4.3	$f(k+1) = 25(5^{2k}) + 3k + 2$						
		$= 18(5^{2k}) + 7(5^{2k}) + 3k + 2$						
		$= 18(5^{2k}) + 7[(5^{2k}) + 3k 1] 18k + 9$	$m = 7$ and $18(5^{2k})$ m = 7 and $18k + 9$	A1 A1				
		$f(k+1) = 18(5^{2k}) + 7f(k) 18k + 9$ or $f(k+1) = 18(5^{2k}) + 7[(5^{2k}) + 3k 1] 18k + 9$	as before	dM1				
	Way 4.4	$f(k+1) = 25(5^{2k}) + 3k + 2$						
		$= 9(5^{2k}) + 16(5^{2k}) + 3k + 2$						
		$= 9(5^{2k}) + 16[(5^{2k}) + 3k 1] 45k + 18$	$m = 16$ and $9(5^{2k})$	A1				
			m = 16 and $45k + 18$	A1				
		$f(k+1) = 9(5^{2k}) + 16f(k) 45k + 18$ or $f(k+1) = 9(5^{2k}) + 16[(5^{2k}) + 3k 1] 45k + 18$	as before	dM1				

